3.337 \(\int \frac{\cot ^3(e+f x)}{(a+b \tan ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=157 \[ -\frac{b (a-3 b)}{2 a^2 f (a-b) \sqrt{a+b \tan ^2(e+f x)}}+\frac{(2 a+3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{2 a^{5/2} f}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f (a-b)^{3/2}}-\frac{\cot ^2(e+f x)}{2 a f \sqrt{a+b \tan ^2(e+f x)}} \]

[Out]

((2*a + 3*b)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]])/(2*a^(5/2)*f) - ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/S
qrt[a - b]]/((a - b)^(3/2)*f) - ((a - 3*b)*b)/(2*a^2*(a - b)*f*Sqrt[a + b*Tan[e + f*x]^2]) - Cot[e + f*x]^2/(2
*a*f*Sqrt[a + b*Tan[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.246375, antiderivative size = 157, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {3670, 446, 103, 152, 156, 63, 208} \[ -\frac{b (a-3 b)}{2 a^2 f (a-b) \sqrt{a+b \tan ^2(e+f x)}}+\frac{(2 a+3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{2 a^{5/2} f}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f (a-b)^{3/2}}-\frac{\cot ^2(e+f x)}{2 a f \sqrt{a+b \tan ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^3/(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

((2*a + 3*b)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]])/(2*a^(5/2)*f) - ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/S
qrt[a - b]]/((a - b)^(3/2)*f) - ((a - 3*b)*b)/(2*a^2*(a - b)*f*Sqrt[a + b*Tan[e + f*x]^2]) - Cot[e + f*x]^2/(2
*a*f*Sqrt[a + b*Tan[e + f*x]^2])

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot ^3(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^3 \left (1+x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 (1+x) (a+b x)^{3/2}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=-\frac{\cot ^2(e+f x)}{2 a f \sqrt{a+b \tan ^2(e+f x)}}-\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{2} (2 a+3 b)+\frac{3 b x}{2}}{x (1+x) (a+b x)^{3/2}} \, dx,x,\tan ^2(e+f x)\right )}{2 a f}\\ &=-\frac{(a-3 b) b}{2 a^2 (a-b) f \sqrt{a+b \tan ^2(e+f x)}}-\frac{\cot ^2(e+f x)}{2 a f \sqrt{a+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{-\frac{1}{4} (a-b) (2 a+3 b)-\frac{1}{4} (a-3 b) b x}{x (1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{a^2 (a-b) f}\\ &=-\frac{(a-3 b) b}{2 a^2 (a-b) f \sqrt{a+b \tan ^2(e+f x)}}-\frac{\cot ^2(e+f x)}{2 a f \sqrt{a+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{(1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 (a-b) f}-\frac{(2 a+3 b) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{4 a^2 f}\\ &=-\frac{(a-3 b) b}{2 a^2 (a-b) f \sqrt{a+b \tan ^2(e+f x)}}-\frac{\cot ^2(e+f x)}{2 a f \sqrt{a+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan ^2(e+f x)}\right )}{(a-b) b f}-\frac{(2 a+3 b) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan ^2(e+f x)}\right )}{2 a^2 b f}\\ &=\frac{(2 a+3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{2 a^{5/2} f}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{(a-b)^{3/2} f}-\frac{(a-3 b) b}{2 a^2 (a-b) f \sqrt{a+b \tan ^2(e+f x)}}-\frac{\cot ^2(e+f x)}{2 a f \sqrt{a+b \tan ^2(e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.426784, size = 115, normalized size = 0.73 \[ \frac{(a-b) \left ((2 a+3 b) \text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},\frac{b \tan ^2(e+f x)}{a}+1\right )+a \cot ^2(e+f x)\right )-2 a^2 \text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},\frac{a+b \tan ^2(e+f x)}{a-b}\right )}{2 a^2 f (b-a) \sqrt{a+b \tan ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^3/(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(-2*a^2*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[e + f*x]^2)/(a - b)] + (a - b)*(a*Cot[e + f*x]^2 + (2*a + 3
*b)*Hypergeometric2F1[-1/2, 1, 1/2, 1 + (b*Tan[e + f*x]^2)/a]))/(2*a^2*(-a + b)*f*Sqrt[a + b*Tan[e + f*x]^2])

________________________________________________________________________________________

Maple [B]  time = 1.523, size = 54353, normalized size = 346.2 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^3/(a+b*tan(f*x+e)^2)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 2.35399, size = 2851, normalized size = 18.16 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*(2*(a^3*b*tan(f*x + e)^4 + a^4*tan(f*x + e)^2)*sqrt(a - b)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)
^2 + a)*sqrt(a - b) + 2*a - b)/(tan(f*x + e)^2 + 1)) - ((2*a^3*b - a^2*b^2 - 4*a*b^3 + 3*b^4)*tan(f*x + e)^4 +
 (2*a^4 - a^3*b - 4*a^2*b^2 + 3*a*b^3)*tan(f*x + e)^2)*sqrt(a)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2
 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2) + 2*(a^4 - 2*a^3*b + a^2*b^2 + (a^3*b - 4*a^2*b^2 + 3*a*b^3)*tan(f*x + e)
^2)*sqrt(b*tan(f*x + e)^2 + a))/((a^5*b - 2*a^4*b^2 + a^3*b^3)*f*tan(f*x + e)^4 + (a^6 - 2*a^5*b + a^4*b^2)*f*
tan(f*x + e)^2), -1/4*(4*(a^3*b*tan(f*x + e)^4 + a^4*tan(f*x + e)^2)*sqrt(-a + b)*arctan(-sqrt(b*tan(f*x + e)^
2 + a)*sqrt(-a + b)/(a - b)) - ((2*a^3*b - a^2*b^2 - 4*a*b^3 + 3*b^4)*tan(f*x + e)^4 + (2*a^4 - a^3*b - 4*a^2*
b^2 + 3*a*b^3)*tan(f*x + e)^2)*sqrt(a)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan
(f*x + e)^2) + 2*(a^4 - 2*a^3*b + a^2*b^2 + (a^3*b - 4*a^2*b^2 + 3*a*b^3)*tan(f*x + e)^2)*sqrt(b*tan(f*x + e)^
2 + a))/((a^5*b - 2*a^4*b^2 + a^3*b^3)*f*tan(f*x + e)^4 + (a^6 - 2*a^5*b + a^4*b^2)*f*tan(f*x + e)^2), -1/2*((
(2*a^3*b - a^2*b^2 - 4*a*b^3 + 3*b^4)*tan(f*x + e)^4 + (2*a^4 - a^3*b - 4*a^2*b^2 + 3*a*b^3)*tan(f*x + e)^2)*s
qrt(-a)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a)/a) + (a^3*b*tan(f*x + e)^4 + a^4*tan(f*x + e)^2)*sqrt(a - b
)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 2*a - b)/(tan(f*x + e)^2 + 1)) + (a^4 - 2
*a^3*b + a^2*b^2 + (a^3*b - 4*a^2*b^2 + 3*a*b^3)*tan(f*x + e)^2)*sqrt(b*tan(f*x + e)^2 + a))/((a^5*b - 2*a^4*b
^2 + a^3*b^3)*f*tan(f*x + e)^4 + (a^6 - 2*a^5*b + a^4*b^2)*f*tan(f*x + e)^2), -1/2*(((2*a^3*b - a^2*b^2 - 4*a*
b^3 + 3*b^4)*tan(f*x + e)^4 + (2*a^4 - a^3*b - 4*a^2*b^2 + 3*a*b^3)*tan(f*x + e)^2)*sqrt(-a)*arctan(sqrt(b*tan
(f*x + e)^2 + a)*sqrt(-a)/a) + 2*(a^3*b*tan(f*x + e)^4 + a^4*tan(f*x + e)^2)*sqrt(-a + b)*arctan(-sqrt(b*tan(f
*x + e)^2 + a)*sqrt(-a + b)/(a - b)) + (a^4 - 2*a^3*b + a^2*b^2 + (a^3*b - 4*a^2*b^2 + 3*a*b^3)*tan(f*x + e)^2
)*sqrt(b*tan(f*x + e)^2 + a))/((a^5*b - 2*a^4*b^2 + a^3*b^3)*f*tan(f*x + e)^4 + (a^6 - 2*a^5*b + a^4*b^2)*f*ta
n(f*x + e)^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{3}{\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**3/(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Integral(cot(e + f*x)**3/(a + b*tan(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (f x + e\right )^{3}}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(cot(f*x + e)^3/(b*tan(f*x + e)^2 + a)^(3/2), x)